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Abstract

The evaluation of sums (matrix–vector products) of the solutions of the three-dimensional biharmonic equation can be
accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a
complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic
equation can be achieved by considering the translation of a pair of elementary solutions of the Laplace equations. The
extension of the theory to the case of polyharmonic equations in R3 is also discussed. An efficient way of performing
the FMM for biharmonic equations using the solution of a complex valued FMM for the Laplace equation is presented.
Compared to previous methods presented for the biharmonic equation our method appears more efficient. The theory is
implemented and numerical tests presented that demonstrate the performance of the method for varying problem sizes and
accuracy requirements. In our implementation, the FMM for the biharmonic equation is faster than direct matrix–vector
product for a matrix size of 550 for a relative L2 accuracy �2 = 10�4, and N = 3550 for �2 = 10�12.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Many problems in fluid mechanics, elasticity, and in function fitting via radial-basis functions, at their core,
require repeated evaluation of the sum
0021-9
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wðqjÞ ¼
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Uðqj; riÞqi; j ¼ 1; . . . ;M ; ð1Þ
where Uðqj; riÞ : R3 ! R is a solution of the three-dimensional biharmonic equation (e.g. the Green�s function
or a multipole solution) centered at ri. This sum must be evaluated at locations qj, and qi are some coefficients.
Straightforward computation of these sums, which also can be considered to be multiplication of a M · N ma-
trix with elements Uji = U(qj, ri) by a N vector with components qi to obtain a M vector with components
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wj = w(qj), obviously requires O(MN) operations and O(MN) memory locations to store the matrix. The point
sets qj (the target set) and ri (the source set) in these problems may be different, or the same. If the points qj and
ri coincide, the evaluation of U may have to be appropriately regularized in case U is singular (e.g. in a bound-
ary element application, quadrature over the element will regularize the function). In the sequel we assume
that this issue, if it arises, is dealt with, and not concern ourselves with it.

In its original form, the fast multipole method, introduced by Greengard and Rokhlin [1], is an algorithm
for speeding up such sums, for the case that the function U is a multipole of the Laplace equation. FMM
inspired algorithms have since appeared for the solution of various problems of both matrices associated with
the Laplace potential, and with those of other equations (the biharmonic, Helmholtz, Maxwell) and in unre-
lated areas (for general radial-basis functions).

Previous work related to the FMM for the biharmonic equations has usually appeared in the context of
Stokes flow or linear elastostatics. The Stokes equations for low Reynolds number fluid flow, and the Lame
equations of elastostatics can both be written in the form
r2u ¼ rq; r � u ¼ aq; ð2Þ

where u is the velocity vector for Stokes flow and the displacement vector for elastostatics, the scalar q is pro-
portional to the isotropic component of the stress, and a is zero for Stokes flow, and can be expressed via the
Poisson ratio for the Lame equations [2]. It is not difficult to show that for a 6¼ 1,
r4u ¼ 0; ð3Þ

i.e., each Cartesian component of the velocity (displacement) satisfies the biharmonic equation.

1.1. Comparison with other FMMs for the biharmonic and related equations

A description of previous applications of the FMM to these problems may be found in the comprehensive
review paper of Nishimura [3]. One approach to the FMM for sums of the biharmonic Green�s function and
its derivatives, avoids the problem of building a translation theory for this equation. These Green�s functions
are represented as sums of Laplace solutions [4]. Another approach is based on expanding the biharmonic
functions in Taylor series [5,6]. Other related FMMs are those that treat the problem of Stokes flow or linear
elastostatics, but not directly applicable to the biharmonic translation, have also appeared. These may not
have the efficiency of an FMM derived from a consideration of the elementary solutions of the biharmonic
equation. Also we can mention the work of [7], where a kernel independent FMM was developed and applied
to solution of Stokes and other equations.

Perhaps the first to apply the FMM to problems related to the three-dimensional biharmonic equation
was the paper by Sangani and Mo [8], who considered Stokes flow around particles. The method relied
on expansions suggested by Lamb [9], and translation formulae, that are O(p4) when there are O(p2) terms
in the Lamb expansion. Greenbaum et al. [10] presented a version of the FMM for the 2D biharmonic
equation that use two complex analytic expressions that get translated together. It is thus difficult to extend
to R3. It was applied to the solution of some problems in 2D elasticity/Stokes flow in Greengard et al. [11].
Popov and Power [6] used Taylor series representations to develop a multipole translation theory for linear
elasticity problems. Their results show a cross-over (when the FMM algorithm is faster than the direct
approach) for 1.1 · 104 unknowns, though the error that is incurred is hard to establish, as they used an
iteration error criterion, which does not have a corresponding value here. They mention that the largest
order of Taylor series considered is 5 in their paper. Fu et al. [4], made the observation that the biharmonic
Green�s function, and its other derivatives could, via elementary manipulations, be written as sums of
Laplace multipoles multiplied by source or target dependent coefficients. For example the biharmonic
Green�s function, can be written as
jr� qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � q1Þ

2 þ ðr2 � q2Þ
2 þ ðr3 � q3Þ

2
q

¼ jrj
2 þ jqj2

jr� qj � 2r1

1

jr� qj q1 � 2r2

1

jr� qj q2 � 2r3

1

jr� qj q3.
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This allowed them to use an existing Laplace multipole method software and achieve an FMM for the elas-
tostatics problem. This approach requires more Laplace solutions to represent higher order derivatives. The
use of this technique for the solution of Stokes problems was presented in [12]. In these papers no explicit
‘‘break-even’’ data was presented.

Yoshida et al. [14] improved on the economy with which elasticity problem solutions were represented via
Laplace solutions. They built a solution of the problem based on the Neuber–Papkovich representation of the
displacement field, which can be expressed in terms of four harmonic functions. The formulation includes
functions of the type /(r) and r/(r), where / is harmonic. The translation method presented in this case by
Yoshida [13,14] shows that the complexity of solution of the elastostatic problem using the FMM in these
papers is equivalent to solution of four independent 3D Laplace equations. Fast translation methods for
the Laplace equation presented in [15,16] where also employed by these authors.

Another field that has seen the use of the FMM for sums of biharmonic and polyharmonic Green�s func-
tions is radial-basis interpolation. The biharmonic function is an optimal radial-basis function in a certain
sense [17], and scattered data interpolation using these in R3 has been pursued by many authors. Chen and
Suter [5] used a Taylor series based FMM to speed the evaluation of spline interpolated 3D data. From their
results a cross-over point of 13,000 for p = 3 and of 18,000 for p = 4 can be inferred. Carr et al. [18] report on
the application of the FMM to a problem of interpolation with biharmonic splines. They do not present any
details of how their FMM is developed and refer to some unpublished work. Published work of these authors
for the case of the multiquadric function, which arises from regularizing the biharmonic Green�s function, is
given in [19]. Here, the authors employ special polynomial expansions for translation and polynomial convo-
lution for fast translation. It reports a cross-over point for the R3 multiquadric of between 2000 and 4000 for
an accuracy of 10�6.

1.2. Contributions of this paper

The work presented in this paper thus appears to differ substantially from those in the literature. It presents
a complete multipole translation theory for the biharmonic and polyharmonic equations in R3, which is of
utility in its own right. Further, we present an efficient way of dealing with translations and the FMM and
present cross-over results which appear to be significantly faster.

1.2.1. Translation theory for the biharmonic equation

We develop a translation theory for the solutions of the biharmonic (and polyharmonic) equation from first
principles. As is well known, solutions to the biharmonic equation U can be expressed as a pair of solutions to
the Laplace equation (/,w) so that
UðrÞ ¼ /ðrÞ þ ðr � rÞwðrÞ.

Our translation theory maintains this form of the solution so that, the translated representation of a solution
U(r) in a new coordinate system, bUðr̂Þ can be represented as
bUðr̂Þ ¼ b/ðr̂Þ þ ðr̂ � r̂Þwðr̂Þ.

We note that the representation in terms of the solutions of the Laplace equations applies for any biharmonic
functions (e.g. the Green�s function, its derivatives), and the number of Laplace equation solutions in the rep-
resentation is always two. A complete error analysis of the translation is provided, and efficient methods for
translation using a rotation, coaxial-translation, rotation scheme similar to that presented in [20] for the
Laplace equation, and elaborated in [21] is described. Explicit expressions for the translation operator are de-
rived, as these are useful in their own right, such as for the solution of boundary value problems (see, e.g.
[22,23]). We also discuss the extension of this method to the solutions of the polyharmonic equation.

1.2.2. Efficient implementation and testing in a complex Laplace FMM code
We present a method to implement the FMM for the real biharmonic equation as a single complex FMM

for the Laplace equation. This observation allows us to use a very efficient Laplace FMM software we have
developed [21]. We present a complete testing of the algorithm for various problem sizes and imposed



366 N.A. Gumerov, R. Duraiswami / Journal of Computational Physics 215 (2006) 363–383
accuracy requirements. We first show that our algorithm obeys the derived error bounds well. The FMM for
the biharmonic equation is found to require about 50% more time than the corresponding case for the Laplace
equation. We observe a cross-over, i.e., when the FMM is faster than direct multiplication that is given in the
table below:
Relative L2 error imposed
 p
 Cross-over N biharmonic
 Cross-over N Laplace for same p
10�4
 4
 550
 320

10�7
 9
 1350
 900

10�12
 19
 3400
 2500
2. Factored solutions of the biharmonic equation

2.1. Spherical basis functions

We consider the biharmonic equation in 3-D satisfied by a function w(r), and given by
r4w ¼ 0; ð4Þ
where $2 is the Laplace operator $ Æ ($). The transformation between spherical coordinates and Cartesian
coordinates with a common origin (x,y,z)! (r,h,u) is given by
x ¼ r sin h cos u; y ¼ r sin h sin u; z ¼ r cos h. ð5Þ
The gradient and Laplacian of a function w in spherical coordinates are:
rw ¼ ir
ow
or
þ ih

1

r
ow
oh
þ iu

1

r sin h
ow
ou

;

r � ðrwÞ ¼ r2w ¼ 1

r2

o

or
r2 ow

or

� �
þ 1

r2 sin h
o

oh
sin h

ow
oh

� �
þ 1

r2sin2h

o
2w

ou2
;

ð6Þ
where (ir, ih, iu) is a right-handed orthonormal basis in spherical coordinates.
Solutions of the biharmonic equation in spherical coordinates can be expressed in the factored form (‘‘sep-

aration of variables’’)
wm
n ðr; h;uÞ ¼ PnðrÞHm

n ðhÞUmðuÞ; ð7Þ

where the function Hm

n is periodic with period p and Um is periodic with period 2p. The spherical harmonics
provide such a periodic basis:
Y m
n ðh;uÞ ¼ Hm

n ðhÞUmðuÞ ¼ Nm
n P jmjn ðlÞeimu; l ¼ cos h;

Nm
n ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� jmjÞ!
ðnþ jmjÞ!

s
; n ¼ 0; 1; 2; . . . ; m ¼ �n; . . . ; n;

ð8Þ
where P jmjn ðlÞ are the associated Legendre functions [24]. The spherical harmonics are also sometimes called
surface harmonics of the first kind, tesseral for m < n and sectorial for m = n. We will use the definition of
the associated Legendre function P m

n ðlÞ that is consistent with the value on the cut (�1,1) of the hypergeomet-
ric function P m

n ðzÞ (see [24]). These functions can be obtained from the Legendre polynomials Pn(l) via the
Rodrigues� formula
P m
n ðlÞ ¼ ð�1Þmð1� l2Þm=2 dm

dlm
P nðlÞ; P nðlÞ ¼

1

2nn!

dn

dln
ðl2 � 1Þn. ð9Þ
Our definition of spherical harmonics coincides with that of Epton and Dembart [25], except for a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ=4p

p
; which we include to make them an orthonormal basis over the sphere.
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The dependence of the function Pn on the radial coordinate, in Eq. (7), is described by
d

dr
r2 d

dr

� �
� nðnþ 1Þ

� �2

Pn ¼ 0. ð10Þ
This equation has four linearly independent solutions of type Pn = ra for a = n + 2, n, �n + 1, and �n � 1. So
the biharmonic equation has the following elementary solutions:
Rm
n ðrÞ ¼ am

n rnY m
n ðh;uÞ; Rm

ð2ÞnðrÞ ¼ r2Rm
n ðrÞ; Sm

n ðrÞ ¼ bm
n r�n�1Y m

n ðh;uÞ; Sm
ð2ÞnðrÞ ¼ r2Sm

n ðrÞ;
n ¼ 0; 1; 2; . . . ; m ¼ �n; . . . ; n; ð11Þ
where am
n and bm

n are some normalization constants, which can be set to unity or selected by special way to
simplify recursion and other functional relations between the elementary solutions. We note that the R-solu-
tions are regular inside any finite domain, while the S-solutions have a singularity at r = 0. Function S0

ð2Þ0ðrÞ �
r is finite at r = 0, while its derivatives are singular at this point. This function is proportional to the whole-
space Green�s function for the biharmonic operator, G(r, r0) = |r � r0|, which satisfies
r4Gðr; r0Þ ¼ r4jr� r0j ¼ �8pdðr� r0Þ; ð12Þ
where d is the Dirac delta-function. We also note that solutions Rm
n ðrÞ and Sm

n ðrÞ are solutions of the Laplace
equation, $2w = 0, in finite and infinite domains (in the latter case the origin is excluded) and the function
S0
ð1Þ0ðrÞ � r�1 is proportional to the whole-space Green�s function for the Laplace operator, |r � r0|�1.

2.2. Factorization of the Green�s function

Let us start by considering factorization of the biharmonic Green�s function G(r, r0) = |r � r0|, where r0 can
be thought as the location of source, and r as the field point. Due to symmetry, the role of these points can be
exchanged. Assuming r0 = |r0| > 0 consider the field of the source in the vicinity of the origin for r = |r| < r0.
The Green�s function can be written as
Gðr; r0Þ ¼ ½ðr� r0; r� r0Þ�1=2 ¼ ðr2 � 2rr0 cos cþ r2
0Þ

1=2 ¼ r2 � 2rr0 cos cþ r2
0

ðr2 � 2rr0 cos cþ r2
0Þ

1=2

¼ ðr2 � 2rr0 cos cþ r2
0Þ

1

r0

X1
n¼0

r
r0

� �n

P nðcos cÞ; r < r0; ð13Þ
where c is the angle between vectors r and r0 and we used the generating function for the Legendre polynomials.
Using the recurrence relation for the Legendre polynomials (2n + 1)lPn(l) = nPn� 1(l) + (n + 1)Pn + 1(l) this
can be rewritten in the form
Gðr; r0Þ ¼
X1
n¼0

r�n�1
0 rnþ2

2nþ 3
� r�nþ1

0 rn

2n� 1

� �
P nðcos cÞ; r < r0. ð14Þ
Further, we will use the addition theorem for spherical harmonics in the form
P nðcos cÞ ¼ 4p
2nþ 1

Xn

m¼�n

Y �m
n ðh0;u0ÞY m

n ðh;uÞ; ð15Þ
where (h0,u0) and (h,u) are spherical polar angles of r0 and r, respectively. Substituting this into Eq. (14) and
using definitions (11), we obtain the following factorization of the Green�s function for the biharmonic
equation
Gðr; r0Þ ¼ 4p
X1
n¼0

Xn

m¼�n

1

am
n b�m

n ð2nþ 1Þ
S�m

n ðr0ÞRm
ð2ÞnðrÞ

2nþ 3
�

S�m
ð2Þnðr0ÞRm

n ðrÞ
2n� 1

� �
; r < r0. ð16Þ
Note that factorization of the Green�s function for the Laplace equation can be written in the form
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jr� r0j�1 ¼ 1

r0

X1
n¼0

r
r0

� �n

P nðcos cÞ ¼ 4p
X1
n¼0

Xn

m¼�n

S�m
n ðr0ÞRm

n ðrÞ
am

n b�m
n ð2nþ 1Þ ; r < r0. ð17Þ
2.3. Reduction of the solution of biharmonic equation to solution of two harmonic equations

There are several ways how to deal with factored solutions of the harmonic and biharmonic equations. The
first way is to develop a translation theory for the biharmonic equation, similarly to the available theories for
the Laplace equation (e.g. [1,26,16,25]). We developed all necessary formulae to proceed in this way. However,
in our study we found a second way, which simply reduces solution of the biharmonic equation to two har-
monic equations with some modification of the translation operators. Computationally both methods have
about the same complexity, and since the latter method seems simpler in terms of presentation and back-
ground theory, we will proceed in this paper with it.

The method is based on the observation that any solution of the biharmonic equation w(r) can be expressed
via two independent solutions of the Laplace equation, /(r) and x(r),
wðrÞ ¼ /ðrÞ þ r2xðrÞ; r2/ðrÞ ¼ 0; r2xðrÞ ¼ 0; r4wðrÞ ¼ 0; r2 ¼ r � r. ð18Þ

Therefore, if we are able to perform operations required for the FMM for the harmonic functions and
then modify them for compositions of type (18) we can solve the biharmonic equation using the same
method.

2.4. Function representations and translations

One of the key parts of the FMM is the translation theory. Let w(r) be an arbitrary scalar function,
w : XðrÞ ! C, where XðrÞ � R3. For a given vector t 2 R3, we define a new function bw : bXðrÞ ! C, bXðrÞ �
R3 such that in bXðrÞ ¼ Xðrþ tÞ the values of bwðrÞ coincide with the values of w(r + t) and treat bwðrÞ as a result
of action of translation operator TðtÞ on w(r)
bw ¼TðtÞ½w�; bwðrÞ ¼ wðrþ tÞ; r 2 bXðrÞ � R3. ð19Þ

For given basis functions, a function can be represented by an infinite set of coefficients obtained by expansion
over this basis. For example, if we have two expansions
/ðrÞ ¼
X1
n¼0

Xn

m¼�n

/m
n Rm

n ðrÞ; b/ðrÞ ¼ /ðrþ tÞ ¼
X1
n¼0

Xn

m¼�n

b/m

n Rm
n ðrÞ; ð20Þ
both expanded over the same basis fRm
n ðrÞg, then it is not difficult to show that
b/m

n ¼
X1
n0¼0

Xn0

m0¼�n0
ðRjRÞmm0

nn0 ðtÞ/
m0

n0 . ð21Þ
Similar relations hold for multipole-to-multipole, or singular-to-singular (S|S), and multipole-to-local, or sin-
gular-to-regular (S|R), translations. Representations of the translation operators can be found from the addi-
tion theorems for the basis functions. For example, for the Laplace regular and singular basis functions we
have:
Rm
n ðrþ tÞ ¼

X1
n0¼0

Xn0

m0¼�n0
ðRjRÞm

0m
n0n ðtÞRm0

n0 ðrÞ;

Sm
n ðrþ tÞ ¼

X1
n0¼0

Xn0

m0¼�n0
ðSjRÞm

0m
n0n ðtÞRm0

n0 ðrÞ; jrj < jtj;

Sm
n ðrþ tÞ ¼

X1
n0¼0

Xn0

m0¼�n0
ðSjSÞm

0m
n0n ðtÞSm0

n0 ðrÞ; jrj > jtj;

ð22Þ
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where t is the translation vector, and ðRjRÞm
0m

n0n , ðSjRÞm
0m

n0n , and ðSjSÞm
0m

n0n are the four index regular-to-regular,
singular-to-regular, and singular-to-singular reexpansion coefficients (sometimes called also local-to-local,
multipole-to-local, and multipole-to-multipole translation coefficients).

Consider now translation of solution of the biharmonic equation represented in the form (18). We have
bwðrÞ ¼TðtÞ½wðrÞ� ¼TðtÞ½/ðrÞ þ ðr � rÞxðrÞ� ¼ /ðrþ tÞ þ ½ðrþ tÞ � ðrþ tÞ�xðrþ tÞ

¼ b/ðrÞ þ ½r2 þ 2ðr � tÞ þ t2�bxðrÞ. ð23Þ
If we want now to represent the translated solution in the form (18), i.e.,
bwðrÞ ¼ e/ðrÞ þ r2 exðrÞ; ð24Þ

then we need to relate the expansion coefficients of the functions e/ðrÞ and exðrÞ and b/ðrÞ and bxðrÞ. Assuming
that all these harmonic functions are represented in the same basis, e.g. fRm

n ðrÞg and noting that exðrÞ depends

on bxðrÞ alone (the harmonic function b/ðrÞ does not contribute to the non-harmonic function r2 exðrÞ), we can
write, taking into account the linearity of all operations considered
e/m

n ¼
X1
n0¼0

Xn0

m0¼�n0

b/m0

n0 þ
X1
n0¼0

Xn0

m0¼�n0
Cmm0

ð1Þnn0 ðtÞbxm0

n0 ; exm
n ¼

X1
n0¼0

Xn0

m0¼�n0
Cmm0

ð2Þnn0 ðtÞbxm0

n0 ; ð25Þ
where Cmm0

ð1Þnn0 and Cmm0

ð2Þnn0 are entries of the matrices, which we convert a solution in the form (23) to the stan-
dard form (24). As a consequence these matrices will be called ‘‘conversion matrices’’. These matrices depend
on the fRm

n ðrÞg or fSm
n ðrÞg. As is shown below these matrices are sparse, and the conversion operation is com-

putationally cheap compared to the translation operation.
Finally, we note that in the FMM we do not translate the function, but rather change the center of

expansion. For example, by local-to-local translation from center r*1 to center r*2 we mean representation
of the same function in the regular bases centered at these point respectively. It is not difficult to see that
the expansion coefficients are related by equations of the type (21), where the translation vector is t =
r*2 � r*1.

2.5. Normalized elementary solutions of the Laplace equation

The normalization factors am
n and bm

n in Eq. (11) can be selected arbitrarily. For example, all of these coef-
ficients can be set to be equal 1. However, we can choose these coefficients in a way that differential and trans-
lation relations take some simple, or convenient for operation form, as will be done below. This follows Epton
and Dembart [25] who used the following normalization for the spherical basis functions for the Laplace
equation:
am
n ¼ ð�1Þni�jmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

ð2nþ 1Þðn� mÞ!ðnþ mÞ!

s
; bm

n ¼ ijmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðn� mÞ!ðnþ mÞ!

2nþ 1

r
;

n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n. ð26Þ
2.5.1. Differential relations

Let us introduce new independent variables n and g instead of Cartesian coordinates x and y according to
n ¼ xþ iy
2

; g ¼ x� iy
2

; x ¼ nþ g; y ¼ �iðn� gÞ. ð27Þ
We can then consider the following differential operators:
oz ¼
o

oz
; og ¼

o

ox
þ i

o

oy
; on �

o

ox
� i

o

oy
. ð28Þ
It is shown in Ref. [25] that the differentiation relations for normalized elementary solutions of the Laplace
equation can be written as:
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ozRm
n ðrÞ ¼ �Rm

n�1ðrÞ; ozS
m
n ðrÞ ¼ �Sm

nþ1ðrÞ;
ogRm

n ðrÞ ¼ iRmþ1
n�1 ðrÞ; ogSm

n ðrÞ ¼ iSmþ1
nþ1 ðrÞ;

onRm
n ðrÞ ¼ iRm�1

n�1 ðrÞ; onSm
n ðrÞ ¼ iSm�1

nþ1 ðrÞ.
ð29Þ
2.5.2. Polynomial representations

We note that the functions Rm
n ðrÞ are polynomials in the variables (n,g,z). This fact is well known as the

regular solutions of the Laplace equation can be expressed via the polynomial basis. For particular normal-
ization (26) the explicit expressions are the following:
Rm
n ðrÞ ¼

Xn�jmj
l¼0

ð�1Þlin�lrm
n�l

nðnþm�lÞ=2gðn�m�lÞ=2zl

nþm�l
2

� �
! n�m�l

2

� �
!l!

;

rm
n ¼

1; nþ m ¼ 2k; k ¼ 0;�1; . . .

0; nþ m ¼ 2k þ 1; k ¼ 0;�1; . . .

	 ð30Þ
where we introduced symbol rm
n which is 1 for even n + m and zero otherwise. This expression can be derived

by considering the differential relations (29) recursively, and taking into account that R0
0ðrÞ ¼ 1, or alternately

can be proved using induction and the same differential relations. Note that according to Eqs. (11) and (26) we
have
Sm
n ðrÞ ¼

bm
n

am
n

r�2n�1Rm
n ðrÞ ¼ ð�1Þnþmðn� mÞ!ðnþ mÞ!r�2n�1Rm

n ðrÞ. ð31Þ
So Eqs. (27) and (30) yield the following expression for these functions
Sm
n ðrÞ ¼

ð�1Þnþmðn� mÞ!ðnþ mÞ!
r2nþ1

Xn�jmj
l¼0

ð�1Þlin�lrm
n�ln

ðnþm�lÞ=2gðn�m�lÞ=2zl

nþm�l
2

� �
! n�m�l

2

� �
!l!

; r2 ¼ 4ngþ z2. ð32Þ
2.5.3. Reexpansion coefficients

The use of the normalized basis functions yields extremely simple expressions for the reexpansion coeffi-
cients entering Eq. (22) [25]:
ðRjRÞm
0m

n0n ðtÞ ¼ Rm�m0

n�n0 ðtÞ; jm0j 6 n0;

ðSjRÞm
0m

n0n ðtÞ ¼ Sm�m0

nþn0 ðtÞ; jm0j 6 n0; jmj 6 n;

ðSjSÞm
0m

n0n ðtÞ ¼ Rm�m0

n0�n ðtÞ; jmj 6 n.

ð33Þ
2.6. Rotational-coaxial translation decomposition

If the infinite series over the basis functions of type (20) are truncated at p terms with respect to the
degree n(n = 0, . . . ,p � 1) the total number of expansion coefficients for basis functions of the first kind
will be p2. Translations using the dense truncated reexpansion matrices of size p2 · p2 performed by
straightforward way will require then O(p4) operations. This cost can be reduced to O(p3) using the rota-
tional-coaxial translational decomposition (e.g. see [20,21]), since the rotations and coaxial translations
can be performed at a cost of O(p3) operations. We also note that at the rotation transforms solution
of the biharmonic equation given in form (18) remains in the same form, since the rotation transform
preserves r2.
2.6.1. Coaxial translations

A coaxial translation is translation along the polar axis or the z-coordinate axis, i.e., this is the case when
the translation vector t = tiz, where iz is the basis unit vector along the z-axis. The peculiarity of the coaxial
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translation is that it does not change the order m of the translated coefficients, and so translation can be
performed for each order independently. For example, Eq. (21) for the coaxial local-to-local translation will
be reduced to
Fig. 1.
the po
referen
in both
b/m

n ¼
X1

n0¼jmj
ðRjRÞmnn0 ðtÞ/

m
n0 ; m ¼ 0;�1; . . . ; n ¼ jmj; jmj þ 1; . . . ð34Þ
The three index coaxial reexpansion coefficients ðF jEÞmnn0 (F, E = S, R; m = 0, ±1, ±2, . . . , n,n 0 = |m|,
|m| + 1, . . .) are functions of the translation distance t alone and can be expressed via the general reexpansion
coefficients as
ðF jEÞmnn0 ðtÞ ¼ ðF jEÞ
mm
nn0 ðtizÞ; F ;E ¼ S;R; t P 0. ð35Þ
Using Eq. (33) we have for normalized basis functions with am
n and bm

n from (26):
ðRjRÞmnn0 ðtÞ ¼ rn0�nðtÞ; n0 P jmj;
ðSjRÞmnn0 ðtÞ ¼ snþn0 ðtÞ; n; n0 P jmj;
ðSjSÞmnn0 ðtÞ ¼ rn�n0 ðtÞ; n P jmj;

ð36Þ
where the functions rn(t) and sn(t) are
rnðtÞ ¼
ð�tÞn

n!
; snðtÞ ¼

n!

tnþ1
; n ¼ 0; 1; . . . ; t P 0 ð37Þ
and zero for n < 0.

2.6.2. Rotations

To perform translation with an arbitrary vector t using the computationally cheap coaxial translation oper-
ators, we first must rotate the original reference frame to align the z-axis of the rotated reference frame with t,
translate and then perform an inverse rotation.

An arbitrary rotation in three dimensions can be characterized by three Euler angles, or angles a, b, and c
that are simply related to them. For the forward rotation, when (h,u) are the spherical polar angles of the
rotated z-axis in the original reference frame, then b = h, a = u; for the inverse rotation with ðbh; buÞ the spher-
ical polar angles of the original z-axis in the rotated reference frame, b ¼ bh, c ¼ bu (see Fig. 1). An important
property of the spherical harmonics is that their degree n does not change on rotation, i.e.,
Y m
n ðh;uÞ ¼

Xn

m0¼�n

T m0m
n ða; b; cÞY m0

n ðbh; buÞ; n ¼ 0; 1; 2; . . . ; m ¼ �n; . . . ; n; ð38Þ
where (h,u) and ðbh; buÞ are spherical polar angles of the same point on the unit sphere in the original and the
rotated reference frames, and T m0m

n ða; b; cÞ are the rotation coefficients.
y
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ẑ

O
A

Â
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The figure in the left shows the transformed axes ðbx; by ;bzÞ in the original reference frame (x,y,z). The spherical polar coordinates of
int bA lying on the bz axis on the unit sphere are (b,a). The figure in the right shows the original axes (x,y,z) in the transformed
ce frame ðbx; by ;bzÞ. The coordinates of the point A lying on the z axis on the unit sphere are (b,c). The points O, A, and bA are the same

figures. All rotation matrices can be derived in terms of these three angles a, b, and c.
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The rotation transform for solutions of the Laplace equation factored over the regular spherical basis func-
tions (11) can be performed as
/ðrÞ ¼
X1
n¼0

Xn

m¼�n

b/m

n Rm
n ðr̂Þ; ð39Þ
where r and r̂ are coordinates of the same field point in the original and rotated frames, while /m
n and b/m

n are
the respective expansion coefficients related as
b/m

n ¼
Xn

m0¼�n

T mm0
n ða; b; cÞam0

n

am
n

/m0

n . ð40Þ
The same holds for the multipole expansions where in Eq. (40) we replace the normalization constants
am

n and am0
n with bm

n and bm0

n , respectively.
The rotation coefficients T m0m

n ða; b; cÞ can be decomposed as
T m0m
n ða; b; cÞ ¼ eimae�im0cH m0m

n ðbÞ; ð41Þ
where fH m0m
n ðbÞg is a dense real symmetric matrix. Its entries can be computed using an analytical expression,

or by a fast recursive procedure (see [21]), which starts with the initial value
H m00
n ðbÞ ¼ ð�1Þm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� jm0jÞ!
ðnþ jm0jÞ!

s
P jm

0 j
n ðcos bÞ; n ¼ 0; 1; . . . ; m0 ¼ �n; . . . ; n ð42Þ
and further propagates values for positive m as
H m0 ;mþ1
n�1 ¼ 1

bm
n

1

2
b�m0�1

n ð1� cos bÞH m0þ1;m
n � bm0�1

n ð1þ cos bÞH m0�1;m
n

h i
� am0

n�1 sin bHm0m
n

	 

; ð43Þ
where n = 2,3, . . . , m 0 = �n + 1, . . . ,n � 1, m = 0, . . . ,n � 2, and am
n ¼ bm

n ¼ 0 for n < |m|, and
am
n ¼ a�m

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1þ mÞðnþ 1� mÞ
ð2nþ 1Þð2nþ 3Þ

s
for n P jmj;

bm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�m�1Þðn�mÞ
ð2n�1Þð2nþ1Þ

q
; 0 6 m 6 n;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�m�1Þðn�mÞ
ð2n�1Þð2nþ1Þ

q
; �n 6 m < 0.

8><>:
ð44Þ
For negative m coefficients H m0m
n ðbÞ can be found using symmetry H�m0;�m

n ðbÞ ¼ Hm0m
n ðbÞ.
3. Matrices for conversion to harmonic form

In this section, we derive explicit expressions for the conversion matrices (25) in the regular and singular
bases of normalized solutions of the Laplace equation. For this purpose, let us consider expansion of functions
ðr � tÞRm

n ðrÞ and ðr � tÞSm
n ðrÞ over the bases of functions fRm

n ðrÞg and fr2Rm
n ðrÞg and fSm

n ðrÞg and fr2Sm
n ðrÞg,

respectively. We present the result in the form of a few lemmas.

Lemma 1. Let Rm
n ðrÞ be a normalized regular elementary solution of the Laplace equation (30). Then
nRm
n ðrÞ ¼ �i

nþ mþ 2

2
Rmþ1

nþ1 ðrÞ �
i

2
zRmþ1

n ðrÞ; n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n. ð45Þ
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Proof. Using the polynomial representations (30) we have
nRm
n ðrÞ ¼

Xn�jmj
l¼0

ð�1Þlin�lrm
n�ln

ðnþm�lþ2Þ=2gðn�m�lÞ=2zl

ðnþm�l
2
Þ!ðn�m�l

2
Þ!l!

¼
Xn�jmj
l¼0

ð�1Þlin�lrm
n�ln

ððnþ1Þþðmþ1Þ�lÞ=2gððnþ1Þ�ðmþ1Þ�lÞ=2zl

ðnþ1Þþðmþ1Þ�l
2

� 1
� �

! ðnþ1Þ�ðmþ1Þ�l
2

� �
!l!

¼ �i
Xnþ1�jmþ1j

l¼0

ð�1Þlinþ1�lrmþ1
nþ1�ln

ððnþ1Þþðmþ1Þ�lÞ=2gððnþ1Þ�ðmþ1Þ�lÞ=2zl

ðnþ1Þþðmþ1Þ�l
2

� 1
� �

! ðnþ1Þ�ðmþ1Þ�l
2

� �
!l!

þ
Xn�jmj

l¼nþ1�jmþ1jþ1

ð�1Þlin�lrm
n�ln

ððnþ1Þþðmþ1Þ�lÞ=2gððnþ1Þ�ðmþ1Þ�lÞ=2zl

ðnþ1Þþðmþ1Þ�l
2

� 1
� �

! ðnþ1Þ�ðmþ1Þ�l
2

� �
!l!

¼ �i
Xnþ1�jmþ1j

l¼0

ðnþ 1Þ þ ðmþ 1Þ � l
2

ð�1Þlinþ1�lrmþ1
nþ1�ln

ððnþ1Þþðmþ1Þ�lÞ=2gððnþ1Þ�ðmþ1Þ�lÞ=2zl

ðnþ1Þþðmþ1Þ�l
2

� �
! ðnþ1Þ�ðmþ1Þ�l

2

� �
!l!

¼ �i
nþ mþ 2

2
Rmþ1

nþ1 ðrÞ þ
i

2

Xnþ1�jmþ1j

l¼0

ð�1Þlinþ1�lrmþ1
nþ1�ln

ððnþ1Þþðmþ1Þ�lÞ=2gððnþ1Þ�ðmþ1Þ�lÞ=2zl

ðnþ1Þþðmþ1Þ�l
2

� �
! ðnþ1Þ�ðmþ1Þ�l

2

� �
!ðl� 1Þ!

¼ �i
nþ mþ 2

2
Rmþ1

nþ1 ðrÞ �
i

2

Xn�jmþ1j

l¼0

ð�1Þlin�lrmþ1
n�l nðnþðmþ1Þ�lÞ=2gðn�ðmþ1Þ�lÞ=2zlþ1

nþðmþ1Þ�l
2

� �
! n�ðmþ1Þ�l

2

� �
!l!

¼ �i
nþ mþ 2

2
Rmþ1

nþ1 ðrÞ �
i

2
zRmþ1

n ðrÞ. �
Corollary 2. Let Rm
n ðrÞ be a normalized regular elementary solution of the Laplace equation (30). Then
gRm
n ðrÞ ¼ �i

n� mþ 2

2
Rm�1

nþ1 ðrÞ �
i

2
zRm�1

n ðrÞ; n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n. ð46Þ
Proof. According to Eqs. (11) and (26) we have for complex conjugate
Rm
n ðrÞ ¼ ð�1ÞmR�m

n ðrÞ. ð47Þ

Since g ¼ n (see Eq. (27)) we obtain using Lemma 1
gRm
n ðrÞ ¼ gRm

n ðrÞ ¼ ð�1ÞmnR�m
n ðrÞ ¼ ð�1Þm �i

n� mþ 2

2
R�mþ1

nþ1 ðrÞ �
i

2
zR�mþ1

n ðrÞ
� �

¼ ð�1Þm i
n� mþ 2

2
ð�1Þm�1Rm�1

nþ1 ðrÞ þ
i

2
zð�1Þm�1Rm�1

n ðrÞ
� �

¼ �i
n� mþ 2

2
Rm�1

nþ1 ðrÞ �
i

2
zRm�1

n ðrÞ. �
Lemma 3. Let Rm
n ðrÞ be a normalized regular elementary solution of the Laplace equation (30). Then
zRm
n ðrÞ ¼ �

1

2nþ 1
ðnþ mþ 1Þðn� mþ 1ÞRm

nþ1ðrÞ þ r2Rm
n�1ðrÞ


 �
;

n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n. ð48Þ
Proof. Using the following identity for the associated Legendre functions
lP m
n ðlÞ ¼

nþ m
2nþ 1

P m
n�1ðlÞ þ

n� mþ 1

2nþ 1
P m

nþ1ðlÞ ð49Þ
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and definition of the basis functions (11) we can find
zRm
n ðrÞ ¼ am

n N m
n eimurnþ1lP jmjn ðlÞ ¼ am

n N m
n eimurnþ1 nþ jmj

2nþ 1
P jmjn�1ðlÞ þ

n� jmj þ 1

2nþ 1
P jmjnþ1ðlÞ

� �
¼ 1

2nþ 1
ðnþ jmjÞ am

n N m
n

am
n�1N m

n�1

r2Rm
n�1ðrÞ þ ðn� jmj þ 1Þ

am
ð1ÞnN m

n

am
nþ1N m

nþ1

Rm
nþ1ðrÞ

� �
. ð50Þ
Since
am
n N m

n ¼
ð�1Þnþmi�jmj

ðnþ jmjÞ! ; ð51Þ
we obtain the statement of the lemma. h

Lemma 4. Let Rm
n ðrÞ be a normalized regular elementary solution of the Laplace equation (30). Then
ðr � tÞRm
n ðrÞ ¼ �

ðitx þ tyÞðnþ mþ 2Þðnþ mþ 1ÞRmþ1
nþ1 ðrÞ

2ð2nþ 1Þ

� ðitx � tyÞðn� mþ 2Þðn� mþ 1ÞRm�1
nþ1 ðrÞ þ 2tzðnþ mþ 1Þðn� mþ 1ÞRm

nþ1ðrÞ
2ð2nþ 1Þ

þ r2½ðitx þ tyÞRmþ1
n�1 ðrÞ þ ðitx � tyÞRm�1

n�1 ðrÞ � 2tzRm
n�1ðrÞ�

2ð2nþ 1Þ . ð52Þ
Proof. Follows from Eqs. (45)–(48) and
ðr � tÞRm
n ðrÞ ¼ ðxtx þ yty þ ztzÞRm

n ðrÞ ¼ ½ðtx � ityÞnþ ðtx þ ityÞgþ tzz�Rm
n ðrÞ. � ð53Þ
Lemma 5. Let Sm
n ðrÞ be a normalized singular elementary solution of the Laplace equation (30). Then
ðr � tÞSm
n ðrÞ ¼

ðitx þ tyÞðn� m� 1Þðn� mÞSmþ1
n�1 ðrÞ

2ð2nþ 1Þ

þ ðitx � tyÞðnþ m� 1Þðnþ mÞSm�1
n�1 ðrÞ þ 2tzðn� mÞðnþ mÞSm

n�1ðrÞ
2ð2nþ 1Þ

� r2½ðitx þ tyÞSmþ1
nþ1 ðrÞ þ ðitx � tyÞSm�1

nþ1 ðrÞ � 2tzS
m
nþ1ðrÞ�

2ð2nþ 1Þ . ð54Þ
Proof. Follows from Eqs. (31) and (52). h

Lemma 6. Let b/m

n , bxm
n , e/m

n , and exm
n be coefficients of expansions of harmonic functions b/ðrÞ, bxðrÞ, e/ðrÞ, andexðrÞ over the normalized regular basis fRm

n ðrÞg that satisfy relation
e/ðrÞ þ r2 exðrÞ ¼ b/ðrÞ þ ½r2 þ 2ðr � tÞ þ t2�bxðrÞ. ð55Þ
Then
e/m

n ¼ b/m

n þ t2 bxm
n �
ðitx þ tyÞðnþ mÞðnþ m� 1Þbxm�1

n�1

2n� 1

� ðitx � tyÞðn� mÞðn� m� 1Þbxmþ1
n�1 þ 2tzðnþ mÞðn� mÞbxm

n�1

2n� 1
;

exm
n ¼ bxm

n þ
1

2nþ 3
½ðitx þ tyÞbxm�1

nþ1 þ ðitx � tyÞbxmþ1
nþ1 � 2tz bxm

nþ1�.

ð56Þ
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Proof. Follows from Eqs. (52) and (55) by grouping the terms multiplying functions Rm
n ðrÞ and r2Rm

n ðrÞ and
comparing coefficients. h

Lemma 7. Let b/m

n , bxm
n , e/m

n , and exm
n be coefficients of expansions of harmonic functions b/ðrÞ, bxðrÞ, e/ðrÞ, andexðrÞ over the normalized singular basis fSm

n ðrÞg that satisfy relation (55). Then:
e/m

n ¼ b/m

n þ t2 bxm
n þ
ðitx þ tyÞðn� mþ 1Þðn� mþ 2Þbxm�1

nþ1

2nþ 3

þ ðitx � tyÞðnþ mþ 1Þðnþ mþ 2Þbxmþ1
nþ1 þ 2tzðn� mþ 1Þðnþ mþ 1Þbxm

nþ1

2nþ 3
;

exm
n ¼ bxm

n �
1

2n� 1
½ðitx þ tyÞbxm�1

n�1 þ ðitx � tyÞbxmþ1
n�1 � 2tz bxm

n�1�.

ð57Þ
Proof. Follows from Eqs. (54) and (55) by grouping the coefficients of the functions Sm
n ðrÞ and r2Sm

n ðrÞ and
comparison of the coefficients. h

Relations (56) and (57) in fact determine the entries of the conversion matrices (25). These matrices are
sparse, since only 4 elements bxm

n are needed to determine exm
n and e/m

n . Note that in the FMM where the trans-
lation is decomposed into rotation and coaxial translation operations, the conversion operation can be per-
formed for a lower cost after the coaxial translation. Conversion formulae for coaxial translation can be
obtained easily from Eqs. (56) and (57) by setting tx = ty = 0, tz = t. So we have for expansions over the regular
basis fRm

n ðrÞg:
e/m

n ¼ b/m

n þ t2 bxm
n � 2t

ðnþ mÞðn� mÞ
2n� 1

bxm
n�1; exm

n ¼ bxm
n �

2t
2nþ 3

bxm
nþ1. ð58Þ
For expansion over the singular basis fSm
n ðrÞg we have:
e/m

n ¼ b/m

n þ t2 bxm
n þ 2t

ðnþ mþ 1Þðn� mþ 1Þ
2nþ 3

bxm
nþ1; exm

n ¼ bxm
n þ

2t
2n� 1

bxm
n�1. ð59Þ
4. Polyharmonic equations

While we will not pursue this here, the method presented above can be easily extended to solution of poly-
harmonic equations of type
r2kw ¼ 0; k ¼ 3; 4; . . . ð60Þ
The Green�s functions of these functions are often used in radial-basis function interpolation. In this case solu-
tion in spherical coordinates can be represented in the form
wðrÞ ¼ /1ðrÞ þ r2/2ðrÞ þ r4/3ðrÞ þ � � � þ r2k�2/kðrÞ ¼
Xk

j¼1

r2j�2/jðrÞ; ð61Þ
where /j(r), j = 1, . . . ,k. The translation operator acts on this solution as follows:
bwðrÞ ¼TðtÞ½wðrÞ� ¼TðtÞ
Xk

j¼1

ðr � rÞ2j�2/jðrÞ
" #

¼
Xk

j¼1

½ðrþ tÞ � ðrþ tÞ�2j�2b/jðrÞ

¼
Xk

j¼1

½r2 þ 2ðr � tÞ þ t2�j�1b/jðrÞ; ð62Þ
where we used the binomial expansion. As shown above the conversion operator provides a transform, which
can be written as:
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½r2 þ 2ðr � tÞ þ t2�b/jðrÞ ¼ Uð1;1Þj ðrÞ þ r2Uð1;2Þj ðrÞ;
½r2 þ 2ðr � tÞ þ t2�2b/jðrÞ ¼ ½r2 þ 2ðr � tÞ þ t2�Uð1;1Þj ðrÞ þ r2½r2 þ 2ðr � tÞ þ t2�Uð1;2Þj ðrÞ

¼ Uð2;1Þj ðrÞ þ r2Uð2;2Þj ðrÞ þ r4Uð2;2Þj ðrÞ;

..

.

½r2 þ 2ðr � tÞ þ t2�j�1b/jðrÞ ¼
Xj

l¼1

r2l�2Uðj�1;lÞ
j ðrÞ;

ð63Þ
where Uðj�1;lÞ
j ðrÞ are harmonic functions. So we can rewrite Eq. (62) as
bwðrÞ ¼Xk

j¼1

Xj

l¼1

r2l�2Uðj�1;lÞ
j ðrÞ ¼

Xk

l¼1

r2l�2
Xk

j¼l

Uðj�1;lÞ
j ðrÞ ¼

Xk

l¼1

r2l�2e/lðrÞ; ð64Þ
where
e/lðrÞ ¼
Xk

j¼l

Uðj�1;lÞ
j ðrÞ. ð65Þ
Eq. (64) represents the translated solution in the same form as the original solution (compare with Eq. (61)).
Therefore, solution of k-harmonic equation can be reduced to solution of k Laplace equations (e.g. the trihar-
monic equation solution can be expressed in terms of three harmonic functions), with modification of the
translation operators, which include multiplications by sparse conversion matrices. Such multiplications
can be greatly simplified using the rotational-coaxial translation decompositions.

5. Fast multipole method

5.1. Mapping a real biharmonic function to a complex harmonic function

A nice property of the harmonic and biharmonic equations is that they can be solved for both real and
complex-valued functions. If the function is complex valued one can simply solve the problem for real and
imaginary parts. In this case one can rewrite the equations in terms of real spherical harmonics and translation
operators, which, however, makes the formulae more involved. So it is preferable to operate with complex
functions. In terms of the use of the FMM we found that it only needs to be slightly modified, so an
FMM matrix–vector product routine for the complex Laplace equation can be used for the biharmonic equa-
tion for real valued functions, which is the practical case typically encountered.

To show how this works, let us first consider solution of the Laplace equation for real valued function /(r).
Assume that this function is expanded over the regular basis according to Eq. (20). Then due to the property
(47) of normalized spherical basis functions we have
/ðrÞ ¼
X1
n¼0

Xn

m¼�n

/m
n Rm

n ðrÞ ¼
X1
n¼0

Xn

m¼�n

ð�1Þm/m
n R�m

n ðrÞ ¼
X1
n¼0

Xn

m¼�n

ð�1Þm/�m
n Rm

n ðrÞ. ð66Þ
Since /ðrÞ ¼ /ðrÞ, comparing this with Eq. (20) and taking into account uniqueness of the expansion over the
basis, we can find that expansion coefficients of real functions satisfy relation
/m
n ¼ ð�1Þm/�m

n ; n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n. ð67Þ
Now, let us consider a complex valued harmonic function
WðrÞ ¼ /ðrÞ þ ixðrÞ; Wm
n ¼ /m

n þ ixm
n ; ð68Þ
where / and x are real, and functions W, /, and x can be expanded over basis fRm
n ðrÞg with coefficients Wm

n ,
/m

n , and xm
n . We have then relation (67), which is valid for coefficients of real functions /m

n and xm
n :
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Wm
n � ixm

n ¼ /m
n ¼ ð�1Þm/�m

n ¼ ð�1ÞmðW�m
n þ ix�m

n Þ ¼ ð�1ÞmW�m
n þ ixm

n ;

Wm
n � /m

n ¼ ixm
n ¼ �ð�1Þmðix�m

n Þ ¼ �ð�1ÞmðW�m
n � /�m

n Þ ¼ �ð�1ÞmW�m
n þ /m

n .
ð69Þ
This yields
/m
n ¼

1

2
½Wm

n þ ð�1ÞmW�m
n �; xm

n ¼
1

2i
½Wm

n � ð�1ÞmW�m
n �. ð70Þ
It is not difficult to check that this relation holds also if Wm
n , /m

n , and xm
n are expansion coefficients of W, /, and

x over basis fSm
n ðrÞg. Thus, if harmonic function W(r) is known via its expansion coefficients, then expansion

coefficients of its real and imaginary parts can be easily retrieved. This maps harmonic function W(r) to bihar-
monic function w(r) represented as Eq. (18).

As the translation process of biharmonic function is concerned, we, first, perform translation of coefficients
Wm

n to bWm

n using translation operators for the Laplace equation, second, we determine b/m

n and bxm
n from bWm

n

according to Eq. (70), third, we convert b/m

n and bxm
n to e/m

n and exm
n according to Eqs. (56) and (57), and, finally,

we form eWm

n ¼ e/m

n þ iexm
n , which is a representation of the translated biharmonic function. This is shown on a

flow chart in Fig. 2.
As mentioned above the conversion operator can be simplified in the case of coaxial translation. The flow

chart corresponding to this case is shown in Fig. 3.

5.2. Basic FMM algorithm

Generally speaking any solver for Laplace equation can be adjusted to solve the biharmonic equation, as
soon as translation operators are modified according to the scheme in Fig. 2. We will not present details of the
basic FMM algorithm, which are well described in the original papers of Greengard, Rokhlin, and others
[1,26]. Our implementation of the Laplace solvers is described in [21], where we also provided operational
and memory complexity, error analysis, and comparison of two fastest versions of the FMM currently
available.
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Fig. 2. A flow chart for translation of solutions of the biharmonic equation using complex harmonic representation.
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A flow chart for translation of solutions of the biharmonic equation using complex harmonic representation and rotation-coaxial
tion decomposition.
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The algorithm consists of two main parts: the preset step, which includes building the data structure (build-
ing and storage of the neighbor lists, etc.) and precomputation and storage of all translation data. The data
structure is generated using the bit interleaving technique described in [27], which enables spatial ordering,
sorting, and bookmarking. While the algorithm is designed for two independent data sets (N arbitrary located
sources and M arbitrary evaluation points), for the current tests we used the same source and evaluation sets
of length N, which is also called the problem size. For a problem size N, the cost of building the data structure
based on spatial ordering is O(N logN), where the asymptotic constant is much smaller than the constants in
the O(N) asymptotics of the main algorithm. The number of levels could be arbitrarily set by the user or found
automatically based on the clustering parameter (the maximum number of sources in the smallest box) for
optimization of computations of problems of different size.

Fig. 4 shows the main steps of the standard FMM, assuming that the preset part is performed initially. Here
Steps 1 and 2 constitute the upward pass in the box hierarchy, Steps 3–5 form the downward pass and Steps 6
and 7 relate to final summation. The upward pass is performed for boxes in the source hierarchy, while the
downward pass and final summation are performed for the evaluation hierarchy. By ‘‘near neighborhood’’
we mean the box itself and its immediate neighbors, which in 3D consists of 27 boxes for a box not adjacent
to the boundary, and the ‘‘far neighbors’’, are boxes from the parent near neighborhood (of the size of the
given box), which do not belong to the close neighborhood. The number of such boxes is 189 in case the
box is sufficiently separated from the boundary of the domain.

5.3. Numerical tests

To validate the theory and conduct some performance tests we developed software for the FMM for solu-
tions of the biharmonic equation. The code was developed in Fortran 95 and compiled using the Compaq 6.5
Fortran compiler. All computations were performed in double precision. The CPU time measurements were
conducted on a 3.2 GHz dual Intel Xeon processor with 3.5 GB RAM. In the tests we studied a benchmark
case where N sources (Green�s functions for the biharmonic equation (16)) are uniformly randomly distributed
inside a unit cube. The intensities of the sources generally were assigned randomly, while for consistency of
error measurements we often used sources of the same intensity.

5.3.1. Computation of errors

To validate accuracy of the FMM we measured the relative error in the L2 norm evaluated over M random
points in the domain
�2 ¼
PM

j¼1jwexactðrjÞ � wapproxðrjÞj2PM
j¼1jwexactðrjÞj2

" #1=2

; ð71Þ
where wexact(r) and wapprox(r) are the exact and approximate solutions of the problem.
The exact solution was computed by straightforward summation of the source potentials (1). This method

is acceptable for relatively low M, while for larger M the computations become unacceptably slow, and the
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Fig. 4. A flow chart of the standard FMM.
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error can be measured by evaluation of the errors at smaller number of the evaluation points. We found exper-
imentally that the relative L2-norm error evaluated over 100 points is quite close to the error evaluated over
the full set for N < 100,000. So we used this partial error measure to evaluate the computation error.

The error of the FMM depends on several factors. It is mainly influenced by the truncation number, p,
which is the number of terms in the outer summation (n = 0, . . . ,p � 1). We note that the total number of
expansion coefficients for a single harmonic function for a truncation number p is p2, since the order changes
as m = �n, . . . ,n, in the truncated series representation of a harmonic function. We used this truncation for
representation of harmonic functions /(r) and x(r) in decomposition of the biharmonic function w(r) (see
Eq. (18)), and accordingly we truncated all translation operators to matrices, where the maximum order m

and degree n are p � 1.
Fig. 5 shows the dependence of the relative L2 error evaluated over M = 100 points on p for fixed N. It is

seen that for larger p this error decays exponentially. However even p � 4 provide a reasonably small error,
which might be sufficient for computation of some practical problems. It is noticeable that �2 almost does
not depend on N. This is shown in Fig. 6. This is due to the growth of the norm of function w(r) (see Eq. 1) with
N. If one is interested with absolute error in L1 norm, then to keep it constant for increasing N we should
increase p � logN. We conducted corresponding numerical experiments for harmonic functions, which are
reported in [21].

5.3.2. Performance

Once some truncation number providing sufficient accuracy is selected, the FMM should be optimized in
terms of selection of optimum maximum level of space subdivision, lmax. As is discussed in [21], for the Laplace
equation lmax is proportional to logN and, in fact, for fixed p theoretically should depend only on the cluster-
ing parameter s, which is the maximum number of sources in the smallest box of space subdivision. This is also
true for the biharmonic equation. Accordingly, we varied this parameter to achieve the minimum CPU time
for each case reported.

Fig. 7 shows the dependences of the CPU time required for the ‘‘run’’ part of the FMM algorithm. It is seen
that independently on p the complexity of the FMM is linear with respect to N, which is consistent with the
theory. The direct summation method scaled as O(N2). We used the same algorithm for the direct summation
as that used in the computation of local sums in the FMM. In this routine we have two nested loops, with the
Green�s function matrix entries computed in the inner loop. We note that the break-even points, N = N* (the
1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0 5 10 15 20 25

Truncation Number, p

R
el

at
iv

e 
L 2

 E
rr

or

FMM
N=131072
lmax = 4

y=ab-p

Fig. 5. A dependence of the relative FMM error in the L2 norm (�2) computed over 100 random points on the truncation number p for
N = 217 = 131,072 sources of equal intensity distributed uniformly randomly inside a unit cube. The maximum level of space subdivision
lmax = 4. For p > 6 the error can be approximated by dependence �2 = ab�p.



1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Number of Sources, N

R
el

at
iv

e 
L 2

 E
rr

or

p=4

p=9

p=19

Fig. 6. Dependences of the relative error �2 on the size of the problem for different truncation numbers. Computations made for settings
described in Figs. 5 and 7. lmax was selected for the optimum CPU time of the algorithm.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Number of Sources, N

C
P

U
 T

im
e 

(s
)

Direct
p=4
p=9
p=19

y=ax
y=bx2

Direct

FMM

p=4

9

19

Fig. 7. Dependences of the CPU (run) time, measured on Intel Xeon 3.2 GHz processor (3.5 GB RAM) on the size of the problem.
Computations performed using the direct summation and the FMM with different truncation numbers shown near the curves. Sources
(Green�s function for biharmonic equation) of equal intensities are distributed uniformly randomly inside a cube. The series of the FMM
data are connected with the solid lines. The dashed lines show asymptotic complexities of the algorithms at large N.

380 N.A. Gumerov, R. Duraiswami / Journal of Computational Physics 215 (2006) 363–383
points at which the CPU time of the direct method coincides with the CPU time of the FMM) depend on the
truncation number (or on the accuracy of computations) and on the implementation of the algorithm. In our
implementation of the 3D biharmonic solver we obtained N* = 550 for p = 4, N* = 1350 for p = 9, and
N* = 3550 for p = 19. Note that we obtained the break-even numbers N* = 320, 900, and 2500 for p = 4, 9,
and 19 using the same coaxial translation method for the Laplace equation for real functions [21].

Fig. 8 shows the CPU times required for the ‘‘run’’ parts of the FMM algorithm for the Laplace and
biharmonic equations (both for real functions). It is seen that, in fact solution of the biharmonic equation
is faster than just sum of two Laplace equations. There are a couple of reasons for that. First, in both cases
we use the same data structure and the translation operators for a single Laplace equation can be used for
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the biharmonic equation. Second, even though the translation for the biharmonic equation more costly than
for the Laplace equation, the direct summation in the neighborhoods of the evaluation points for the both
equations have the same cost. Therefore translations only take a part of the CPU time. Moreover, the opti-
mization of the algorithm leads to balancing of the costs of translations and direct summations. So, theo-
retically, one can expect only 50% (not 100%) CPU time increase for solution of the biharmonic equation
compared to the Laplace equation. These numbers are close to that we observed in actual computations for
the maximum difference in the CPU times, e.g. for N = 219 the increase of the CPU time was 59%, and for
N = 220 we had 36% increase (note that the ratio of the CPU times varies, due to the discrete change of the
maximum level of space subdivision, which means that the translations may constitute not exactly 50% of
the run time of the algorithm).

Fig. 8 also shows the time needed to preset the FMM. As we mentioned above this step should be per-
formed only once for a given set of source and evaluation points and includes setting of the data structure
and precomputation of the translation operators. Even if it performed every time when the FMM run routine
is called, it does not substantially affect the execution time, since it may contribute only 10% or so to the total
computation time (so the FMM can be used for computation of dynamic system with moving sources). The
graph of the preset time shows jumps, which are related to the change of the maximum level of space subdi-
vision. Almost the same CPU time is required to preset the FMM for different number of data points and the
same lmax.

Memory issues. The memory required for an efficient FMM substantially depends on the resources available,
since the speed can be substantially increased using extensive precomputations, while on the other hand the
memory can be substantially reduced when resources are constrained to fit what is available trading speed
for memory savings [21]. The speed also can be traded for memory by running the code in a non-optimal setting
(say with a reduced number of levels below what is optimal). In the present implementation we used precom-
putation of the translation operators in the FMM preset step to reduce the run time. As it is seen from Fig. 9 this
creates a substantial memory overhead for relatively small N (memory consumption without this overhead is
shown by the triangles).

Note, that the major memory consumption is due to the storage of sets of the sources, evaluation points
(which, generally speaking can be different from the sources), the input and output vectors (source strengths
and the values of the sum), and due to the storage of the expansion coefficients. This memory for double pre-
cision (8 byte) real numbers can be estimated as
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N bytes 	 8 � 3N þ 3N þ N þ N þ 8

7
2 � N

s
� 2p2

� �
¼ 64N � 1þ 4p2

7s

� �
. ð72Þ
For the Laplace equation the coefficient of p2 should be two times smaller (due to the twice shorter represen-
tation). In this estimate N/s is the number of boxes, since the optimal performance should be achieved at some
value of clustering parameter s which does not depend on N, or varies slowly with N. This shows also that for
fixed p the memory grows linearly with N, which is consistent with the numerical observations. Note that the
staircase shape of the graphs are related to the changes of lmax (in fact for uniform distributions one should use
8lmax instead of N/s in Eq. (72)).

6. Conclusions

We developed a fast method to solve a biharmonic equation in three dimensions based on the FMM for the
Laplace equation. The method modifies translation operators and such modifications can be used with any sol-
ver of the Laplace equation employing translations or reexpansions including tree codes and various versions of
the FMM. Numerical tests show good performance in terms of accuracy and speed.
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